Code No.: 16448 AS

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) VI-Semester Advanced Supplementary Examinations, July-2023 **Control Systems Engineering** Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q. No	Part-A ($10 \times 2 = 20 \text{ Marks}$) Stem of the question					
1.	Classify the control systems in all respects.	N	I	CC	PO	PSC
2.	Illustrate how a branch point is many to	2	1		1	1
2		2	1	1	1	1
 4. 	Evaluate the time constant of a control system whose closed loop transfer function is given as $G(s) = \frac{\kappa}{s(s+0.5)(s+2)}$.	2	2	2	2	-
	What is the need of break away and break in points in the Root Locus method of stability?	2	1	2	1	
5.	How are the Gain & Phase Margins important in analyzing the Stability of a Control System?	2	1	3	2	1
6.	State the principle of argument in determining Nyquist stability.					
7.	Differentiate compensator and controller.	2	1	3	1	1
8.	Draw the block diagram of PID controller neatly.	2	1	4	1	1
9.	List any two limitations with transfer function model of system analysis.	2	1	4	1	1
10.	state transition matrix for the state	2	1	5	1	-
	by $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$	2	2	5	2	-
1	$Part-B (5 \times 8 = 40 Marks)$					
	r toop system.	4	2	1	2	1
b) 1	Using Mason's gain formulae find C/R of the Signal Flow Graph of a control system, shown in Figure below.	4	3	-1	3	1
a) C	onsider unity feedback control system with open loop transfer function $(s) = \frac{20}{s(s+1)}$. Determine rise time, peak lovershoot, peak time and ttling time.	2		2 1		
	tetch the root locus for the system described by the following transfer and provided inction, $G(s)H(s) = \frac{K}{S(S+2)(S+4)}$. Also determine the range of d.c. gain which the system Is stable.	3	2	2 2	-	. /

3. a) A	unit step response test conducted on a second order system yielded tak overshoot 0.2 and peak time 0.3ms. Obtain corresponding resonant	2	2	3	2	1	
pe	eak and resonant frequency.	6	4	3	4	1	
	ressover frequency, gain margin and phase margin.						
	$G(S)H(S) = \frac{80(S+5)}{S^2(S+50)}$					- 1	
4. a) A	control system is described by the open loop transfer function of	6	3	4	3	1	
	Design an appropriate compensator for the						
S	$G(s) = \frac{1}{s(s+1)(s+4)}$. Design and the settling time specifications of maximum peak overshoot as 20% and the settling time is 4seconds.	_	0	4	2	1	
b) \	Write the advantages and disadvantages of PD controller.	2	2	4	2	1	
15 -)	State and prove the properties of state transition matrix.	4	2	5	4	-	
b)	A MIMO system is described by the following State space model. Applying the system for controllability and observability.	4	4	5	. 4	-	
	$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u; \ y = \begin{bmatrix} 4 & 5 & 1 \end{bmatrix} x$						
16 a)	Simplify the block diagram shown in Figure. Then obtain the closed-loop	4	2	1	1	1	
	transfer function $G(s) = \frac{C(s)}{R(s)}$.						
	H_3 $C(s)$						
	$R(s)$ G_1 G_2 G_3 G_4						
	H ₁ H ₂		4 .	3	2	1	_
b)							
	$G(s) = \frac{\kappa}{(s+2)(s+4)(s^2+6s+25)}$. Apply Routh criterion, to determine the value of K for sustained oscillations.	e					
17.	Answer any two of the following:	_	4	3	3	2	1
a)	The open loop transfer function of a unity feedback system is $G(s)$		1	-70			
	The open loop transfer function of a unity $\frac{1}{s(1+s)(1+2s)}$. Determine the Gain margin and Phase Imargin.		4	3	4	2	
b)	Explain the features of PI controller with a neat block diagram.	ole	4	3	5	2	
c)	representation of the transfer function						
	$Y(s) = \frac{24}{s^3 + 9s^2 + 26s + 24}.$						

 $Y(s) = \frac{1}{s^3 + 9s^2 + 26s + 24}$ M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

om's Taxono	my Level, Co, course outsets,	20%
i)	Blooms Taxonomy Level – 1 Blooms Taxonomy Level – 2	30%
ii)	Blooms Taxonomy Level – 3 & 4	50%
iii)	Blooms Taxonomy Level 5 to	
